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Final Progress Report 

Zhiqiang Cai * 

When I was at CASC in LLNL during the period between July and December 
of last year, I was working on two research topics: (1) least-squares approachs for 
elasticity and Maxwell equations and (2) high-accuracy approximations for non-smooth 
problems. Below is the description. 

1 First-order system least squares for linear and 
nonlinear elasticity equations 

Basic equations of elasticity are generally in self-adjoint form, so they lend themselves 
naturally to an energy minimization principle, cast in terms of the primitive displace- 
ment variables. Unfortunately, this direct approach seems to have many practical diffi- 
culties (e.g., degrading approximation properties of the discretization and convergence 
properties of the solution process) as the material tends to become incompressible (i.e., 
the Lam6 constant X tends to infinity for fixed Lam6 constant p, or, more precisely, 
the Poisson ratio v tends to 0.5-). There have been several attempts to develop al- 
ternate approaches that are robust in the incompressible limit. Compounding these 
difficulties is the fact that what is often needed in practice are the stress tensor. These 
variables can be obtained by differentiating displacements, but this weakens the order 
and strength of the approximation. 

The practical need of the stress tensor motivated estensive studies of mixed finite 
element methods in the stress-displacement formulation. Unlike mixed methods for 
second-order scalar elliptic boundary value problems, stress-displacement finite ele- 
ments are extremely difficult to construct. This is due to the fact that the stress tensor 
is symmetric. A beautiful finite element space has not been constructed until a few 
months ago by Arnold and Winther. Their space is a natural extension of the Raviart- 
Thomas space of H(div). Previous works impose the symmetry condition weakly via 
a Lagrange multiplier. The minimum degree of freedom on each triangle of Arnold- 
Winther space for the symmetric stress tensor in two dimensions is twenty-four, which 
is very expensive. Like scalar elliptic problems, mixed methods lead to saddle-point 
problems and mixed finite elements are subject to the inf-sup condition. Many solution 
methods which work well for symmetric positive problems cannot be applied directly. 

*Department of Mathematics, Purdue University, 1395 Mathematical Science Building, West 
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Although substantial progress in solution methods for saddle-point problems has been 
achieved, these problems may still be difftcult and expensive to  solve. 

In the recent years there has been a serious interest in least-squares methods. A 
number of least-squares formulations have been proposed, analyzed, and implemented. 
In particular, the least-squares method by Cai, ManteufFel, and McCormick aims to 
compute the stress tensor directly and, hence, accurately, and it is robust in the incom- 
pressible limit. This method is a two-stage algorithm that first solves for the gradients 
of displacement (which immediately yield stress tensor), then for the displacement itself 
(if desired). Under certain H2 regularity assumptions, it admits optimal H1-like per- 
formance for standard fbite element discretization and standard multigrid and domain 
decomposition solution methods that is uniform in the Poisson ratio for all variables. 
A limitation of this approach is the requirement of sufficient smoothness of the original 
problem. Also, the gradient of displacement is not an immediate physical quantity and 
it is hard to extend this approach to nonlinear elasticity. 

With goals of the accurate approximation to the stress, robustness in the incom- 
pressible limit, efficient solvers, and applicability to nonlinear elasticity, we developed 
a least-squares finite element method based on the stress-displacement formulation. 
As we mentioned before, a major numerical difficulty is how to handle the symmetry 
of the stress tensor in the stress-displacement formulation. To circumvent such a dif- 
ficulty, we impose the symmetry condition in the first-order system and then apply 
the least-squares principle to  this over-determinant, but consistent system. The least- 
squares functional uses the L2 norm and it is shown that the homogeneous functional 
is equivalent to the energy norm involving the Lam6 constant for the displacement and 
the standard H (  div) norm for the stress. This implies that  our least-squares finite 
element method using the respective Crouzeix-Raviart and Raviart-Thomas spaces for 
the displacement and stress yields optimal error estimates uniform in the incompress- 
ible limit. The total degree of freedoms is twelve per triangle in two dimensions and 
eighteen per tetrahedron in three dimensions. This work has been written as a research 
article which has been submitted for possible publication in SIAM Journal o n  Numer -  
ical AnaZysis. The algebraic system resulting in this discretization may be efficiently 
solved by multigrid methods which is the topic of our current study. We will also 
continue our effort by the important extension of this approach to nonlinear elasticity 
and possible applications in the ALE3D project in LLNL. 

2 High-accuracy approximations for non-smooth 
problems 

It is common knowledge from approximation theory that the order of accuracy for 
almost all numerical methods is limited by order of the highest derivative of the ap- 
proximated function. It is also well known that solutions of many differential equations 
are not smooth. Hence, almost all current numerical methods for non-smooth problems 
are low order. 
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In the beginning of the last century, Richardson proposed the so-called extrapo- 
lation technique (or the deferred approach t o  the l imit)  for an approximate sequence 
limu(h) = u parameterized by h (the discretization step), in order to increase the 
h+O 
accuracy of discretization methods. Richardson extrapolation is a simple, but inge- 
nious technique, and it is called "a method for turning straw into gold" by authors 
of Numerzcal Recipes. This technique has been widely used in numerical calculations 
involving numerical differentiation, integration, ordinary and partial differential equa- 
tions, algebraic equations, and integral equations. In particular, its application to 
ordinary differential equations with sufficiently smooth solutions, Le., the Bullirsch- 
Stoer method, is the best known approach to obtain high-accuracy approximations 
with minimal computational effort. 

The theoretical foundation of extrapolation methods is the asymptotic expansion 
of the error u - u(h) in terms of powers of the parameter h: 

Here, the exponents 0 <  CY^ < aZ < . . .  < CY, need not be integers, the coefficients 
7% # 0 is independent of h, and the function y,(h) is bounded as h -+ 0. For a very 
limited number of problems with certain types of singularities, expansion (1) has been 
derived for numerical integration and differential equations. But the derivation of (1) is 
usually tedious, hard, or impossible. In many applications, solutions of the underlying 
differential equations are not smooth and their singular behavior are unknown, and, 
hence, the asymptotic expansion in (1) cannot be established using the existing math- 
ematical mechanism. With unknown exponents ai, Richardson estrapolation cannot 
be used. 

Based on approximation theory, the order of accuracy of the current approxima- 
tion, i.e., the exponent al, depends on the smoothness of the underlying approximated 
function. When it is not smooth, then cyI can be very small in many applications. For 
example, for simple Poisson equations on polygonal domains, standard finite element 
approximations on a quasi-uniform mesh obtain only O(h,"l) accuracy with a1 between 
half and one. The value of a1 depends on the interior angle of the re-entrance corner. 
Therefore, it is necessary and important to obtain approximations that are more accu- 
rate than o(hQ1). To do so, extrapolation seems to be a feasible, almost universal, and 
effective approach. However, the unavailability of asymptotic expansions prevents the 
use of extrapolation. When u(h) is sufficiently smooth, the exponents az for i 2 2 are 
determined by its higher order derivatives. Currently, there are no known quantities 
characterizing these exponents when u(h) is not smooth. 

To quantify these exponents or, equivalently, determine the order of accuracy with- 
out expansions, we introduce the rate of corrections: 

u(h/2) - u(h) bl = lim 
h - 4  u(h/4) - u(h/2)' 

which is computationally feasible. It is been shown that b1 = 2"'. Hence, the order of 
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accuracy is increased by using Richardson extrapolation with a1 = log, bl: 

where w1 = 1/(2al - 1) = 1/(& - 1). The exponents ai for i = 2, ..., n - 1 can be 
calculated recursively in a similar fashion. For example, 

One step of our method consists of computing an approximation to bl based on (2) 
and then computing the extrapolation ul(h) based on (3). The order of accuracy for 
ul(h) is then O(ha2). This procedure can be repeatedly used to compute higher order 
approximations. It is important to recognize that this method is a recursive proce- 
dure and that it does not use any ex-tra information other than the sequence itself. 
Basically, our approach can be applied to any convergent sequence {u(h)} whose rate 
of corrections exists. We performed preliminary numerical experiments for numerical 
differentiation, integration, and ordinary differential equations with non-smooth data. 
In these examples, we are able to compute higher order approximations. For example, 
a Gth-order approximation to the derivative of f(z) = zl.O1 - sin(lOz)/10 at z = 0 is 
calculated with the rate relaxation method based on the forward difference approxima- 
tion sequence. Note that the f(z) is differentiable at x = 0 only up to  the l . O l t h  order. 
We are writing a research article on this work, which will be submitted for possible 
journal publication. Topics of our current study is to (1) combine this procedure with 
the Bullirsch-Stoer method for ordinary differential equations with non-smooth data 
and (2) apply this method to partial differential equations. We will also continue our 
effort by identifying possible applications in LLNL program. 
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